Compact hypercomplex and quaternionic manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Hypercomplex Structures Associated to Quaternionic Manifolds Hypercomplex Structures Associated to Quaternionic Manifolds

If M is a quaternionic manifold and P is an S 1-instanton over M , then Joyce constructed a hypercomplex manifold we call P (M) over M. These hypercomplex manifolds admit a U(2)-action of a special type permuting the complex structures. We show that up to double covers, all such hypercomplex manifolds arise in this way. Examples, including that of a hypercomplex structure on SU(3), show the nec...

متن کامل

Quaternionic Independent Component Analysis using hypercomplex nonlinearities

We propose a quaternionic version of the Infomax algorithm to perform ICA on quaternion valued data. We introduce the three possible types of nonlinearities that can be used as activation functions and derive their differentiability properties. It is shown that only hypercomplex (fully quaternionic) nonlinearity can lead to the estimation of all possible classes of proper quaternion random vari...

متن کامل

Hypercomplex Structures on Group Manifolds

We study deformations of hypercomplex structures on compact Lie groups. Our calculation is through the complex deformation theory of the associated twistor spaces. In general, we nd complete parameter spaces of hypercomplex structures associated to compact semi-simple Lie groups. In particular, we discover the complete moduli space of hypercomplex structures on the product of Hopf surfaces.

متن کامل

Hypercomplex structures on Kähler manifolds

Let (M, I) be a compact Kähler manifold admitting a hypercomplex structure (M, I, J,K). We show that (M, I, J,K) admits a natural HKT-metric. This is used to construct a holomorphic symplectic form on (M, I).

متن کامل

Harmonic space and quaternionic manifolds

We find a principle of harmonic analyticity underlying the quaternionic (quaternionKähler) geometry and solve the differential constraints which define this geometry. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1992

ISSN: 0022-040X

DOI: 10.4310/jdg/1214448266